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i IREFLECTION OF SPHIERICAL WAVES AT WEAK INTERFACES

Zhurnal Tekhnicheskoy Fiziki L Brekhovskikh
~(Journal of Technical Physics)
I Vol XVIII, No. 4, 1968,

The field of an acoustic or radiowave point source

at a flat interface is investigated in the case where the

properties of the media on both sides of the interface are

similar. The limits of applicability of the existing theories
are pointed out. Criteria are found for which transition
layers may be replaced by interfaces.

Introduction

We encounter the problem of reflection of spherical waves when
investigating the field of an electromagnetic or acoustic point source
in the presence of an interface between two media. This problem is the
suiject of a large number of works in which it has been investigated
basically from two points of view: a) investigation of the field at
strongly reflecting interfaces,which in the case of electromagnetic waves
corresponds to propagation of radiowaves over good conducting surfaces
[1-41; b) investigation of the field in the wave range with any proper-
ties of the media (5, 6, 13]. These two cases zctually overlap each
other. The cited papers as a group represent a complete investigation
of the problem satisfying the majority of practical and experimental

questions.

However, returning to the solutions obtained in these papers, let
us note that they give infinitely increasing values for the amplitudes
of the reflected waves on approximation of the index of refraction n to
one at the interface (see part 1 in [2] and also [5, 6, 13]). Clarifica-
tion of the nature of the anomaly obtained here, determination of the

I
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limits of applicability of the existing theories and 4erivation of formu-
las which are valid for n as close as desired to "ews-- all are of theo-
retical and practical interest. In particular, when :investigating radio
wave propagation in the atmosphere frequently it is necessary to deal
with their reflection from layers which may be reduced to interfaces be-
tween media with similar dielectric constants. The index of refraction
for these interfaces may differ from one by only small fractions of a
2 (7]. We encounter the same ,case on reflection of sound from layers of
discontinuity in the sea. As is known, the latter a- coparatively
thin layers extending in the horizontal direction with large temperature
and salinity gradients. The index of refraction equil to the ratio of
the propagation rate of sound in the water above and .below a layer of
discontinuity also differs from one by only a few percent or fraction of
a percent.

The interfaces of media with similar properties and, consequently,
an index .of refraction ,close to one will be called weak interfaces in
the remainder of this article.

Let us note that the formulas obtained by Ryazin (12] for the Hertzian
vector are also valid for weak interfaces. However, they refer only to
the case where the transmitter and receiver are both at the interface.

§ 1. Limits of Applicabilty of the Existing Theories

Appaently we were the first to note [133 the .anomaly obtained when
n + 1, and also the fact that investigation of the field of a reflected
wave by expansion in a series with respect to powers .of l/kOR (which is

done by the saddle point method, used in references [1L, 5, 6]) is possible
for all glancing angles only on fulfillment of the condition ([13], equa-
tion (28)

AoRIn"--1t>1, (1)

where R is the distance from the image radiator to the receiver. If the
latter condition is not fulfilled, the saddle point method gives correct
values for the fields only at sufficiently large glascing angles.X
(figure 1) satisfying the condition

k, R7X i. (2)

The inapplicability of the saddle point method for n clze to one
and swall glancing angles may be understood from some very obvioas argu-
ments which we consider it useful to present. On reflection of a spheri-
cal waveall points of the interface do not play an essential role, but
only some effective zone [141 in ths shape of an ellipse the area of which
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z.approaches zero on conversion to geometric optics where it is possible to
talk about reflection of the wave from a certain point un an interface.
In accord with this the field of the reflected wave at an arbitrary point
in space is the result of waves going only in the directions which corre-
spond to straight lines connecting this point with all parts of the effec-

tive zone. These will be the directions deviating by small angles on the
order of l/1lk 0J? and less from the direction of the beam reflected by the

laws of geometric optics. Application of the saddle point method is pos-
sible if the reflection coefficient and its derivative with respect to the
angle may be considered to have low variation in this range of angles.

However, from the known expression for the reflection coefficient.
of plane waves reflected from the interface of two media

mn s In n%-s cos /.

B ( )- - :n._,__ o(3)

we find that for n close to one and small X the first and second deriva-
tives of B(X) may be as large as desired. Here m - n2 in electrodynamics

and m - pl/P (the density ratio of the media) in acoustics.

Application of the saddle point method gives geometric optics
(acoustics) in the first approximation and the corrections to it in
subsequent expressions. For n close to one, fulfillment of condition
(2) ensures that the corrections will be small. Therefore, it is also
a condition of applicability of geometric optics in the description of
the field of a reflected wave.
2. The Field of a Point Source Located at a Weak Interface

Let us investigate the field of a point source located at a

height of z0 (which may also be zero) of a flat interface at the point

(r. z). In the electromagnetic case a vertical dipole will be used as
the radiator, and in the acoustic case, a pulsating sphere of infinitely
small radius. The field will be characterized by a scalar function P
which is the vertical component of the llertzian vector or the acoustic

potential respectively.

It may be demonstrated [9] that for any relationship of fixed media
we will have

elk, fto
?i (4)

for the field in the upper medium where the first term is the direct wave
and the second is the reflected wave. Here
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Figure 1. 1? -- the distance from the reception point (Pjz)

to the radiator (2; R -- the distance from the same point to

the image radiator Q1 ; X is the glancing angle formed by the
path of the beam with the interface.

He're 1b6'- k; b-- -k2; k and k are the wave numbers rem-
0 1

pectively in the upper and lower media, ad m has the same value as in
(3), and - z +not

Ocr problem is to investigate expression (5) for n f k 1 A 0 close

to one.

Let us expand the expression under the integral sign in (5) in a
series with respect to powers of n2 - I. For this purpose we shall
introduce the notation

xk12 kc' kol(n 2 - 1

-- o -- "(6)

Then .6 - .
bo 61 € - V +., 1 7)

8=0

Substityting this expression in (5) and considering (6), for the
reflected wave we obtain

1The radius of convergence of the series (7) is equal to one. There-

fore, representation of q) in the form of (8) is possible only in the case
where the integration pats is selected in (5) on which Ilx < 1 everywhere,
that is, 1bOJ2 > Ik01 -2 k1

21 For example, we can take for this path the
0t

path which runs from 0 first along the real axis, then by way of the
point = k0 along the semicircle of radius Prester than Il-2 -)z 2

lying in the fourth quadran4 and then back to the real axis. Since the
expression under the integral sign in (5) has no singularities there are
no obstacles to converting to this path of integration. It is assumed that
in the integrals (9) obtained after expansion in the siries, the integration
path again coincides with the real axis from which, of course, the values

of the integrals are not changed. - I"
4 _
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~=. 4 ,'t , o n (8)

where

0 7 pr - d (9)

V For the expansion coefficients B in (7) we have
P3 m

Bo-- - . B, B- =n-, (10)

where the successive coefficients may be found by the recurrent formula

1) B-  ) B,_, = ,m(,,L-.(I
Il

The integrals I are investigated for any a in. the appendix. We
shall limit ourselves here to the case of sufficiently small n2 - 1 so
that in (8) the second and subsequent powers of this variable may be
neglected. Then, considering the known formula1

CO

~- Jo(r) di, (12)

wb obtain

rn-I mV 1 ik 0' (nt- 1)

-(m.i.) fj' (13)

where

As is shown in the appendix, the integral 1 may be represented in
the form

1)= di W -t-+A M , 4) !
where R, =

z.--k d (15)

It remains for us to investigate the integral term in (i4). If
we divide it into the difference of two integrals, we have

'S.e [31, page 941.
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R, . - a ,- a.(16J
1) di - di if AdR,4

Here the second integral is taken directly, and on substitution of
the limits it gives ( (e. r1 __ ).7'o (17)

To calculate the first integral let us replace the variables by
the formula

ko(RI-r)--z2,, from which T -- a- 2x. d,.

t h e n e t = -,k o

IR <%_:;72k0,

We shall assume that

and then on the entire integration path - as a result of

which the first term under the square root in (18) may be neglected.

As a result we obtain

f -,dfr~VC(U).+.fS(U), (19)
0

where

--- ((R20)

-* and C(u) and S(u) are the Fresnel integrals. Substituting this result
in (14) and considering (19) we obtain the expression for I . On sub-
stituting this in the expression for the reflected wave (131 we have

- _- _. "'(..")
. - 1nt - Ii n0 2 .)r

In electrodynamics where m R n2, the first term in the braces is
kOr time& less than the second and consequently may be omitted. In
acoustics we are interested only in the cases where In - 1 is on the order
of or less than n2 - 1 so that the first term may again be omitted.I

As a result the reflected wave is written as

+ When m - 1 is not aiall, we do not obtain a singularity when

6-



B R (22)

,-,

where i (n-l)k:r[ -,:,V,-il(n-( - 1) 1. F-NI IIB - 1au ,C" -i -L2--

and in electrodynamics the factor ni(lrn -i- n2J(n "-'l) "  may be replaced

by 1/4.

§ 3. Discussion of the Results

Expression (22) represents an ordinary spherical wave reflected with
a reflection coefficient of B. It may be shown that for u2 >> 1 it co-
incides with the reflection coefficient of plane waves (3) if the latter
is also expanded inaseries with respect to powers of n2 - 1 and is
limited to the first power. This must be expected inasmuch as the con-
dition u2 )> 1 which may also be written in the form

g 2>R (24)

is equivalent to condition (2) on fulfillment of which geometric optics
is valid.

Let us introduce the new variable

X Wu

in place of u, and let us use the asymptotic expansion of the Fresnel
integrals (81 with respect to powers of I/s.

Then we obtain

.o- i -I 1 /( 1 1.3
2 /2x ~ 2x 2x)

Substituting this in (23) and considering that sin X V r/R, drop-
ping small values of

,(1- - .- (25)• B0 ---':" (,in -a-* z i =

we obtain for B the same expression as we obtained on expanding (3) with
respect to powers of n 2  1 limiting ourselves to the firat term and

dropping the term m-1 in accord with the above indicated arguments.
Mr-i-Y

When u << 1 in (23) all terms in brackets, except the 1, may be
neglected as a result of which the reflection coefficient B again assumes
a simple form.

7



It is of interest to trace the value of the ratio B/B for all
values of U, 0

According to (23) and (25), we have

2 --T-j" (26)

The modulus of this quantity is depicted in figure 2 as a function
of U w ere he logarithmic scale is taken along the axes. With an increase
in U, /J'B/B increases ontinuously. This increase first proceeds
according Po the law u which on the assumed scale corresponds to a
straight line. For large u, JIBBo approaches zero which conditions the

applicabiiity of geometric optics, that is, ooinisO4.e of the reflection
coefficients of spherical and plans waves. This result refers to the
case of a sufficiently thin transition layer (see § 4) when the latter

may be replaced by an interface. For the case of thick traysition liyers
we have only the calculations of reflection of plane waves.

We may consider that the limits of applicability of these calcula-
tions to spherical waves are also determined by the condlition (24).

OJ.F-

- ----- -

OO~l~t o~z 0.. o 0.? 1 .. _

Figure 2. Modulus of the ratio B/B as a function
of a parameter U. B is the reflection coefficient
*nsuing from the exact theory of reflection of a
spherical wave; B0 is the reflection coefficient
for a plane wave (geometric optics or acoustics).

Let us present some examples where condition (24) is not fulfilled.

For the case of radio waves with location of the weak interface at a
height of 400 meters above the earth and at distances of 50 km the value
of kO 2/R is 10 when X - 2 meters and 2 when 1 " 10 meters.

1For a detailed bibliography see the article by Vvedenskiy and

Arenberg [7].
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In the latter case the field of the reflected wave must be calcu-
lated by formulas (22) and (23) obtained above.

In hydroacoustics with a depth of the layer of discontinuity of
30 meters and at a distance of R = 2Ikm the reflected wave cannot be
calculated by the laws of geometric acoustics forX > 1 meter.

In practical respects investigation of the propagation of sound
* or radio waves in a layer bounded on one side by a weak interface is

of interest. We demonstrated earlier [9] that in the most general case
the field in the layer may be broken down into an infinite sum of waves
reaching the receiver after a different number of reflection from the
interface. In the investigated case the amkplitude of a wave underolng
k reflections from a weak interface will have a factor of ( 2 - 1)
from whith it follows that in our approximation it is necessary to consider
only the following six waves not having one or only one reflection from
this interface: 1) a direct wave, 2) a wave reflected from an ordinary
interface, c) a wave reflected from a weak interface, 4) a wave reflected
from an ordinary and then a weak interface, 5) the same with the inverse
order of reflections, 6) a wave reflected twice from an ordinary inter-
face and once from a weak interface. The second of the enumerated waves
is calculated by the formulas obtained above (13], and we investigated
the third one above. The fourth, fifth a1ad sixth reduce. to the third
if the ordinary interface is an absolutely reflecting interface as, for
example, the surface of the water in the hydroacoustic case. Here the
wave amplitude will be calculated by formulas (22) and (23) where formula
(20) will be valid for u if by we mean the projection qf the path followed
by the corresponding beam to the z-axis, and R - r2-- 7 In addition,
if for an absolutely reflecting interface the reflection coefficient BO
-1, as in the above indicated hydroacoustic case, when the second inter-
face is not absolutely ropiecting, the problem is somewhat more compli-
cated, but it may also be solved with the help ol expansions of the
solution in a series with respect to powers of n - 1 and subsequent
application of the saddle point method. However, we shall not discuss
this.

5 4. Replacement of the Transition Layer by an Interface

In the majority of practical cases a transition layer occurs in
place of a weak interface. The question arises as to the cases in which

this layer may be idealized as an interface. It is known that in ordin-
ary cases this may be found if the thickness of the layer is small by
comparison with the wavelength. Weak interfaces also have a peculiarity
in this case since the corresponding condition for them turns out to be

weaker. To derive the latter let us use some obvious argunents.

Let the transition layer with a thickness I be parallel to the
plane a - 0. Let us consider reflection of the plane wave incident on it
at a glancing angle X. We are interested in the cases where I is com-

parable to the wave length X or greater than it where the difference in

propagation rates on the upper and lower boundaries of the layer is

small. Under these conditions the propagation of a plane wava will be

-9 --



subject to the laws of geometric optics so that cie dependency of the

phase of the wave on the coordinate z will be given by the factor exp

Iii f k z da]. The extent of the layer in the z direction may be neglected

if the phase inroad in the thickness of the layer issuall, That is, if

0

The latter condition will be reinforced by replacing k by its
maximum value in the layer as a result of which it is written as

()max Z << 1. 
(27)

With a monotonic change in kz within the boundaries of the layer

(only this case is of interest to us) the maximum value of k is reached

on one boundary of the layer as a result of which the preceding condition.

is entirely equivalent to the following two conditions

S1) I << (.R)I << 1, (28)

where the indices 0 and 1 refer to the media located above and below the

layer respectively. Since (kz)0 . 2r/X0 sinXand (kz)1 - 2/X1 sin X,

where X, is the glancing angle of the refracted wave, condition (28) is

rewritten in the form

lsin7<1./2', 1sin. .2i. (29)

In the case of weak interfaLes X X, X0  XI and then both condi-

tions reduce to one condition

I sin Z <)12t. (30)

For small glancing angles the last condition may be fulfilled for 4
comparable to and even greater than X.

The conversion from plane waves to spherical waves causes complica-
tions at first glance. Actually, on expansion of the spherical wave in
plane waves (12], and also [3], page 943) the wave must be considered with
a wave vector component along the z axis as large as desired and imaginary.
For large k the condition (27) is not fulfilled. However, this difficulty

-10-



disappears if we consider the field in the wave zone (Y0  >> 1). Then

as was pointed out in § 2, only plane waves will play a significant role
which have glancing angles close to the angle X depicted in figure 1. This
angle must be substituted in condition (30).

*Appendix

The integrals (9) must be represented in a somewhat different form.
Differentiating I for this purpose 2s times with respect to 4 and consid-

8
ering (12), we obtain

dulP a'l' R

where

R-Vri- .

As is easy to check by differentiation, the last equation is
satisfied by the function

(S) ***.**s2 [ C4 t .

where R r +

o(a) e(a)
For 0  (a ... , by sequentially differentiating the last

expression and assuming = 0 we obtain

"; J"(').= o, CjV= ,_-

and in general

S@ I (d'4_Q (-1)l J,

Using the formulas given by Watson [10] for integrals of this type
(see also the paper by Fock [11]), we obtain

'2S I

z \ ,1"-!---------11

t ___________



The variables. A and D used in the text are equal respectively to

a() and ci (l). By replacing the Hankel functions by their asymptotic

representations, from the last formula we obtain the values of (15) for
them.
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